Environmentally acceptable hydraulic fluids

Application notes and requirements for Rexroth hydraulic components

Hydraulic fluids

- Title
 - Hydraulic fluids based on mineral oils and related hydrocarbons
 - Environmentally acceptable hydraulic fluids
 - Fire-resistant, water-free hydraulic fluids
 - Fire-resistant, water-containing hydraulic fluids

- Standard
 - DIN 51524
 - ISO 15380
 - ISO 12922
 - ISO 12922

- Data sheets
 - RE 90220
 - RE 90221
 - RE 90222
 - RE 90223

- Classification
 - HL
 - HLP
 - HLDP
 - HVLP
 - HLPD
 - and more
 - HEPG
 - HEES partially saturated
 - HEES saturated
 - HEPR
 - HETG
 - HFDR
 - HFDU (ester base)
 - HFDU (glycol base)
 - and more
 - HFC
 - HFB
 - HFAE
 - HFAS
Contents

1 Basic information .. 3
 1.1 General instructions.. 3
 1.2 Environmental compatibility .. 3
 1.3 Scope ... 3
 1.4 Safety instructions .. 3

2 Solid particle contamination and cleanliness levels .. 4

3 Selection of the hydraulic fluid ... 5
 3.1 Selection criteria for the hydraulic fluid ... 5
 3.1.1 Viscosity .. 5
 3.1.2 Viscosity-temperature behavior .. 5
 3.1.3 Wear protection capability .. 6
 3.1.4 Material compatibility .. 6
 3.1.5 Aging resistance .. 6
 3.1.6 Biological degradation ... 6
 3.1.7 Air separation ability (ASA) .. 7
 3.1.8 Demulsifying ability and water solubility .. 7
 3.1.9 Filterability ... 7
 3.1.10 Corrosion protection .. 7
 3.1.11 Additivation.. 7

2 Classification and fields of application .. 8

4 Hydraulic fluids in operation .. 10
 4.1 General .. 10
 4.2 Storage and handling ... 10
 4.3 Filling of new systems .. 10
 4.4 Hydraulic fluid changeover ... 10
 4.5 Mixing and compatibility of different hydraulic fluids ... 10
 4.6 Re-additivation .. 10
 4.7 Foaming behavior .. 11
 4.8 Corrosion .. 11
 4.9 Air ... 11
 4.10 Water .. 11
 4.11 Fluid servicing, fluid analysis and filtration .. 11

5 Disposal and environmental protection ... 12

6 Glossary .. 13
1 Basic information

1.1 General instructions

The hydraulic fluid is the common element in any hydraulic component and must be selected very carefully. Quality and cleanliness of the hydraulic fluid are decisive factors for the operational reliability, efficiency and service life of a system.

Hydraulic fluids must conform, be selected and used in accordance with the generally acknowledged rules of technology and safety provisions. Reference is made to the country-specific standards and directives (in Germany the directive of the Employer’s Liability Insurance Association BGR 137).

This data sheet includes recommendations and regulations concerning the selection, operation and disposal of environmentally compatible hydraulic fluids in the application of Rexroth hydraulic components.

The individual selection of hydraulic fluid or the choice of classification are the responsibility of the operator.

It is the responsibility of the user to ensure that appropriate measures are taken for safety and health protection and to ensure compliance with statutory regulations. The recommendations of the lubricant manufacturer and the specifications given in the safety data sheet are to be observed when using hydraulic fluid.

This data sheet does not absolve the operator from verifying the conformity and suitability of the respective hydraulic fluid for his system. He is to ensure that the selected fluid meets the minimum requirements of the relevant fluid standard during the whole of the period of use.

Other regulations and legal provisions may also apply. The operator is responsible for their observance, e.g. EU directive 2004/35/EG, 2005/360/EG and their national implementation. In Germany the Water Resources Act (WHG) is also to be observed.

We recommend that you maintain constant, close contact with lubricant manufacturers to support you in the selection, maintenance, care and analyses.

When disposing of used hydraulic fluids, apply the same care as during use.

Environmentally acceptable hydraulic fluids have been used successfully for many years. In some countries, the use of environmentally acceptable hydraulic fluids is already prescribed in ecologically sensitive areas (e.g. forestry, locks, weirs).

Environmentally acceptable hydraulic fluids may only be used in the pharmaceutical and food industry subject to required certification to FDA/USDA/NSF H1.

1.2 Environmental compatibility

There is no unambiguous legal definition for environmentally acceptable hydraulic fluids as different testing procedures can be applied for biological degradation and toxicity.

According to ISO 15380 the definition of "environmentally acceptable" is as follows: Humans, animals, plants, air and soil must not be endangered. With regard to hydraulic fluids in an unused condition in the bin this mainly means:
- biological degradation at least 60 %
 (according to ISO 14593 or ISO 9439)
- acute fish toxicity at least 100 mg/l
 (according to ISO 7346-2)
- acute daphnia toxicity at least 100 mg/l
 (according to ISO 5341)
- acute bacteria toxicity at least 100 mg/l
 (according to ISO 8192)

The same amount of care should be taken when handling environmentally acceptable hydraulic fluids as for mineral oils, leakage from the hydraulic system should be avoided. Environmentally acceptable hydraulic fluids are designed so that in the event of accidents and leakage, less permanent environmental damage is caused than by mineral oils, see also chapter 5 “Disposal and environmental protection”.

In comparison to mineral oil HLP/HVLP, the biological degradation of environmentally acceptable hydraulic fluids may change fluid aging, see chapter 3.1.5 “Aging resistance”, 3.1.6. “Biological degradation” and 4 “Hydraulic fluids in operation”.

1.3 Scope

This data sheet must be applied when using environmentally acceptable hydraulic fluids with Rexroth hydraulic components.

The specifications of this data sheet may be further restricted by the specification given in the data sheets for the individual components.

The use of the individual environmentally acceptable hydraulic fluids in accordance with the intended purpose can be found in the safety data sheets or other product description documents of the lubricant manufacturers. In addition, each use is to be individually considered.

Rexroth hydraulic components may only be operated with environmentally acceptable hydraulic fluids according to ISO 15380 if specified in the respective component data sheet or if a Rexroth approval for use is furnished.

The manufacturers of hydraulic systems must adjust their systems and operating instructions to the environmentally acceptable hydraulic fluids.

Notes:

The Bosch Rexroth Fluid Rating List 90245 includes environmentally acceptable hydraulic fluids which were rated positively in accordance with the fluid rating procedure for Rexroth hydraulic components (pumps and motors) according to Rexroth data sheet 90235.

These specifications are not checked or monitored by Bosch Rexroth. The list in the market overview does not therefore represent a recommendation on the part of Rexroth or approval of the respective hydraulic fluid for use with Rexroth components and does not release the operator from his responsibility regarding selection of the hydraulic fluid.

Bosch Rexroth will accept no liability for its components for any damage resulting from failure to comply with the notes below.

1.4 Safety instructions

Hydraulic fluids can constitute a risk for persons and the environment. These risks are described in the hydraulic fluid safety data sheets. The operator is to ensure that a current safety data sheet for the hydraulic fluid used is available and that the measures stipulated therein are complied with.
2 Solid particle contamination and cleanliness levels

Solid particle contamination is the major reason for faults occurring in hydraulic systems. It may lead to a number of effects in the hydraulic system. Firstly, single large solid particles may lead directly to a system malfunction, and secondly small particles cause continuous elevated wear.

For mineral oils, the cleanliness level of environmentally acceptable hydraulic fluids is given as a three-digit numerical code in accordance with ISO 4406. This numerical code denotes the number of particles present in a hydraulic fluid for a defined quantity. Moreover, foreign solid matter is not to exceed a mass of 50 mg/kg (gravimetric examination according to ISO 4405).

In general, compliance with a minimum cleanliness level of 20/18/15 in accordance with ISO 4406 or better is to be maintained in operation. Special servo valves demand improved cleanliness levels of at least 18/16/13. A reduction in cleanliness level by one level means half of the quantity of particles and thus greater cleanliness. Lower numbers in cleanliness levels should always be striven for and extend the service life of hydraulic components. The component with the highest cleanliness requirements determines the required cleanliness of the overall system. Please also observe the specifications in table 1: "Cleanliness levels according to ISO 4406" and in the respective data sheets of the various hydraulic components.

Hydraulic fluids frequently fail to meet these cleanliness requirements on delivery. Careful filtering is therefore required during operation and in particular, during filling in order to ensure the required cleanliness levels. Your lubricant manufacturer can tell you the cleanliness level of hydraulic fluids as delivered. To maintain the required cleanliness level over the operating period, you must use a reservoir breather filter.

If the environment is humid, take appropriate measures, such as a breather filter with air drying or permanent off-line water separation.

Note: the specifications of the lubricant manufacturer relating to cleanliness levels are based on the time at which the container concerned is filled and not on the conditions during transport and storage.

Further information about contamination with solid matter and cleanliness levels can be found in brochure RE 08016.

Table 1: Cleanliness levels according to ISO 4406

<table>
<thead>
<tr>
<th>Particles per 100 ml</th>
<th>Scale number</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 8,000,000</td>
<td>24</td>
</tr>
<tr>
<td>4,000,000</td>
<td>23</td>
</tr>
<tr>
<td>2,000,000</td>
<td>22</td>
</tr>
<tr>
<td>1,000,000</td>
<td>21</td>
</tr>
<tr>
<td>500,000</td>
<td>20</td>
</tr>
<tr>
<td>250,000</td>
<td>19</td>
</tr>
<tr>
<td>130,000</td>
<td>18</td>
</tr>
<tr>
<td>64000</td>
<td>17</td>
</tr>
<tr>
<td>32000</td>
<td>16</td>
</tr>
<tr>
<td>16000</td>
<td>15</td>
</tr>
<tr>
<td>8000</td>
<td>14</td>
</tr>
<tr>
<td>4000</td>
<td>13</td>
</tr>
<tr>
<td>2000</td>
<td>12</td>
</tr>
<tr>
<td>1000</td>
<td>11</td>
</tr>
<tr>
<td>500</td>
<td>10</td>
</tr>
<tr>
<td>250</td>
<td>9</td>
</tr>
<tr>
<td>130</td>
<td>8</td>
</tr>
<tr>
<td>64</td>
<td>7</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
</tr>
</tbody>
</table>
3 Selection of the hydraulic fluid

Environmentally acceptable hydraulic fluids for Bosch Rexroth hydraulic components are assessed on the basis of their fulfillment of the minimum requirements of ISO 15380.

3.1 Selection criteria for the hydraulic fluid

The specified limit values for all components employed in the hydraulic system, for example viscosity and cleanliness level, must be observed with the hydraulic fluid used, taking into account the specified operating conditions.

Hydraulic fluid suitability depends, amongst others, on the following factors:

3.1.1 Viscosity

Viscosity is a basic property of hydraulic fluids. The permissible viscosity range of complete systems needs to be determined taking account of the permissible viscosity of all components and it is to be observed for each individual component.

The viscosity at operating temperature determines the response characteristics of closed control loops, stability and damping of systems, the efficiency factor and the degree of wear.

We recommend that the optimum operating viscosity range of each component be kept within the permissible temperature range. This usually requires either cooling or heating, or both.

The permissible viscosity range and the necessary cleanliness level can be found in the product data sheet for the component concerned.

If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. In return, there will be lower internal leakage losses. If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which may lead to cavitation damage.

If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination and a shorter life cycle will result.

Please ensure that the permissible temperature and viscosity limits are observed for the respective components. This usually requires either cooling or heating, or both.

3.1.2 Viscosity-temperature behavior

For hydraulic fluids, the viscosity temperature behavior (V-T behavior) is of particular importance. Viscosity is characterized in that it drops when the temperature increases and rises when the temperature drops. The interrelation between viscosity and temperature is described by the viscosity index (VI).

If exposed to the cold for several days, viscosity may rise significantly (HETG and HEES). After heating, the characteristic values as specified on the data sheet are restored. Please ask your lubricant manufacturer for the "Flow capacity after 7 days at low temperature" (ASTM D 2532) of fluid classifications HETG and partially saturated HEES.

All known environmentally acceptable hydraulic fluids have better viscosity temperature behavior than mineral oil HLP and generally feature greater shear stability than HVLP mineral oils. This should be taken into consideration when selecting hydraulic fluid for the required temperature range. A lower viscosity level can frequently be used to save any drive power during a cold start and avoid viscosity being too low at higher temperatures. The required viscosity and temperature limits in the product data sheets are to be observed in all operating conditions.

Depending on the basic fluid types/classes, VI indices can be achieved of 140–220, see Fig. 1: “Examples: V-T diagrams in comparison to HLP (reference values)” and Table 4: “Classification and fields of application of environmentally acceptable hydraulic fluids”.

![Fig. 1: Examples V-T diagrams in comparison to HLP (reference values, double-logarithmic representation)](image)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>-20 °C</th>
<th>40 °C</th>
<th>100 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEES partially saturated</td>
<td>1250</td>
<td>46</td>
<td>9</td>
</tr>
<tr>
<td>HEES saturated</td>
<td>2500</td>
<td>46</td>
<td>8</td>
</tr>
<tr>
<td>HEPG</td>
<td>2500</td>
<td>46</td>
<td>10</td>
</tr>
<tr>
<td>HEPR</td>
<td>1400</td>
<td>46</td>
<td>10</td>
</tr>
<tr>
<td>For comparison HLP (see RE 90220)</td>
<td>4500</td>
<td>46</td>
<td>7</td>
</tr>
</tbody>
</table>

Typical viscosity data [mm²/s]

Detailed V-T diagrams may be obtained from your lubricant manufacturer for their specific products.
3.1.3 Wear protection capability

Wear protection capability describes the property of hydraulic fluids to prevent or minimize wear within the components. The wear protection capability is described in ISO 15380 via test procedures "FZG gear test rig" (ISO 14635-1) and "Mechanical test in the vane pump" (ISO 20763). From ISO VG 32, ISO 15380 prescribes a rating of at least 10 (FZG test). At present, the FZG test cannot be applied to viscosity classes < ISO VG 32. The wear protection capability of environmentally acceptable hydraulic fluids in relation to the two test procedures is comparable to that of mineral oil HLP/HVLP.

3.1.4 Material compatibility

The hydraulic fluid must not negatively affect the materials used in the components. Compatibility with coatings, seals, hoses, metals and plastics is to be observed in particular. The fluid classifications specified in the respective component data sheets are tested by the manufacturer with regard to material compatibility. Parts and components not supplied by us are to be checked by the user.

Table 2: Known material incompatibilities

<table>
<thead>
<tr>
<th>Classification</th>
<th>Incompatible with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE... general</td>
<td>One-component color coatings, lead, galvanized zinc coatings, some non-ferrous metals, seals made of NBR. In some cases, the latter show major increases in volume when impermissibly aged hydraulic fluids come into contact with the material. NBR is only permitted by prior consent, please observe the customary seal and tube replacement intervals. Do not use any hydrolysis/susceptible polyurethane qualities.</td>
</tr>
<tr>
<td>HETG/HEES</td>
<td>Zinc, some non-ferrous alloys with zinc</td>
</tr>
<tr>
<td>HEPG</td>
<td>Steel/aluminum tribocountacts, paper filters, polymethylmethacrylate (PMMA), NBR</td>
</tr>
</tbody>
</table>

Note

Please check seals and coatings of control cabinets, outer coatings of hydraulic components and accessories (connectors, cables, control cabinets) for resistance to vapors issuing from hydraulic fluids.

3.1.5 Aging resistance

The way an environmentally acceptable hydraulic fluids ages depends on the thermal, chemical and mechanical stress to which it is subjected. The influence of water, air, temperature and contamination may be significantly greater than for mineral oils HLP/HVLP. Aging resistance can be greatly influenced by the chemical composition of the hydraulic fluids.

High fluid temperatures (e.g. over 80 °C) result in an approximate halving of the fluid service life for every 10 °C temperature increase and should therefore be avoided. The halving of the fluid service life results from the application of the Arrhenius equation (see Glossary).

Table 3: Reference values for temperature-dependent aging of the hydraulic fluid

<table>
<thead>
<tr>
<th>Reservoir temperature</th>
<th>Fluid life cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °C</td>
<td>100 %</td>
</tr>
<tr>
<td>90 °C</td>
<td>50 %</td>
</tr>
<tr>
<td>100 °C</td>
<td>25 %</td>
</tr>
</tbody>
</table>

A modified aging test (without adding water) is prescribed for fluid classifications HETG and HEES. Hydraulic fluids with HEPG and HEPR classification are subjected to the identical test procedure as mineral oils (with 20 % water added). The calculated fluid service life is derived from the results of tests in which the long-term characteristics are simulated in a short period of time by applying more arduous conditions (condensed testing). This calculated fluid service life is not to be equated to the fluid service life in real-life applications.

Table 3 is a practical indicator for hydraulic fluids with water content < 0.1%, cf. chapter 4.10. "Water".

3.1.6 Biological degradation

Environmentally acceptable hydraulic fluids are ones which degrade biologically much faster than mineral oils. Biological degradation is a biochemical transformation effected by micro-organisms resulting in mineralization. For environmentally acceptable hydraulic fluids that make reference to ISO 15380, biological degradation according to ISO 14593 or ISO 9439 must be verified. 60% minimum degradation is defined as limit value. Proof of biological degradation is furnished for the new, unmixed, ready-formulated hydraulic fluids. Aged or mixed hydraulic fluids are less able to degrade biologically. Biological degradation outside the defined test procedure is subject to a variety of natural influences. The key factors are temperature, humidity, contamination, fluid concentration, type and quantity of micro-organisms. Environmentally acceptable hydraulic fluids require no extended maintenance in comparison to mineral oils, please observe chapter 4 "Hydraulic fluids in operation".
3.1.7 Air separation ability (ASA)

The air separation ability (ASA) describes the property of a hydraulic fluid to separate undissolved air. Hydraulic fluids always contain dissolved air. During operation, dissolved air may be transformed into undissolved air, leading to cavitation damages. Fluid classification, fluid product, reservoir size and design must be coordinated to take into account the dwell time and ASA value of the hydraulic fluid. The air separation capacity depends on the viscosity, temperature, basic fluid and aging. It cannot be improved by additives.

According to ISO 15380, for instance, an ASA value \(\leq 10 \) minutes is required for viscosity class ISO VG 46, 6 minutes are typical, lower values are preferable.

3.1.8 Demulsifying ability and water solubility

The capacity of a hydraulic fluid to separate water at a defined temperature is known as the demulsifying ability. ISO 6614 defines the demulsifying properties of hydraulic fluids.

Fluids classified HETG, HEES and HEPR separate from water. HETG and HEES hydraulic fluids have a different water separation ability to mineral oil HLP/HVLP. At \(20 \) °C, in comparison to mineral oil HLP/HVLP, a multiple (\(> \) factor 3) of water can separate in the hydraulic fluid. Water solubility is also more temperature-dependent than for mineral oils. With regard to water solubility, HEPR hydraulic fluids behave like HVLP hydraulic fluids (see RE 90220). In the majority of cases, HEPG-classified fluids HEPG dissolve water completely, see chapter "4.10 Water".

3.1.9 Filterability

Filterability describes the ability of a hydraulic fluid to pass through a filter, removing solid contaminants. The hydraulic fluids used require a good filterability, not just when new, but also during the whole of their service life. Depending on the different basic fluids (glycols, saturated and partially saturated ester oils, hydrocrack oils, polyalpha olefins, triglycerides) and additives (VI enhancers), there are great differences here.

The filterability is a basic prerequisite for cleanliness, servicing and filtration of hydraulic fluids. Rexroth therefore requires the same degree of filterability of environmentally acceptable hydraulic fluids as for mineral oils HLP/HVLP to DIN 51524. As ISO 15380 does not comment on the filterability of hydraulic fluids, filterability comparable to that of mineral oils HLP/HVLP must be requested of lubricant manufacturers.

Filterability is tested with the new hydraulic fluid and after the addition of 0.2 % water. The underlying standard (ISO 13357-1/-2) stipulates that filterability must have no negative effects on the filters or the hydraulic fluid, see chapter 4 "Hydraulic fluids in operation".

3.1.10 Corrosion protection

Hydraulic fluids should not just prevent corrosion formation on steel components, they must also be compatible with non-ferrous metals and alloys. Corrosion protection tests on different metals and metal alloys are described in ISO 15380. Hydraulic fluids that are not compatible with the materials listed above must not be used, even if they are compliant with ISO 15380.

Rexroth components are usually tested with HLP hydraulic fluids or corrosion protection oils based on mineral oils before they are delivered.

3.1.11 Additivation

The properties described above can be modified with the help of suitable additives. Environmentally acceptable hydraulic fluids should never contain heavy metals. According to the present state of knowledge, all hydraulic fluids, regardless of additivation, can be filtered with all customary filter materials in all known filtration ratings (\(\geq 0.8 \) μm), without filtering out effective additives at the same time.

Bosch Rexroth does not prescribe any specific additive system.
3.2 Classification and fields of application

<table>
<thead>
<tr>
<th>Classification</th>
<th>Features</th>
<th>Typical field of application</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEPG</td>
<td>Basic fluid, glycols</td>
<td>Systems on exposed water courses (locks, weirs, dredgers)</td>
<td>For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.</td>
</tr>
<tr>
<td>ISO 15380</td>
<td>Density at 15 °C: typically > 0.97 kg/dm³</td>
<td></td>
<td>- Very good viscosity/temperature characteristics, shear stability</td>
</tr>
<tr>
<td></td>
<td>VI: typical > 170</td>
<td></td>
<td>- Resistant to aging</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Incompatible with mineral oil (exceptions must be confirmed by the lubricant manufacturer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Can be water-soluble</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Can be mixed with water</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Very good wear protection properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A higher implementation temperature with the same viscosity in comparison to mineral oil is to be expected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Due to the higher density in comparison to HLP, lower suction pressures are to be anticipated for pumps. Reduce the maximum speed as required and optimize suction conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Classified as insignificantly water-endangering (water hazard class WGK 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Prior to commissioning, contact the lubricant manufacturer, as the components are tested with mineral oil HLP/corrosion protection oil.</td>
</tr>
<tr>
<td>HEES</td>
<td>Basic fluid: Ester based on renewable raw materials, synthetic esters, mixtures of various esters, mixtures with polyalphaolefines (< 30%)</td>
<td>Suitable for most fields of application and components.</td>
<td>For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.</td>
</tr>
<tr>
<td>ISO 15380</td>
<td>Density at 15 °C: typically 0.90–0.93 kg/dm³</td>
<td></td>
<td>- Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under −15 °C.</td>
</tr>
<tr>
<td></td>
<td>VI: typical > 160</td>
<td></td>
<td>- In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity</td>
</tr>
<tr>
<td></td>
<td>Iodine count < 90</td>
<td></td>
<td>- Limit lower (depending on viscosity class) and upper implementation temperatures (maximum 80 °C due to aging)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Good viscosity/temperature characteristics, shear stability.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Good corrosion protection, if correspondingly additivized</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Mostly classed as insignificantly water-endangering (water hazard class WGK 1), in some cases as not water-endangering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- High dirt dissolving capacity on fluid changeovers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- In unfavorable operating conditions (high water content, high temperature), HEES on ester basis have a tendency to hydrolysis. The acidic organic decomposition products can chemically attack materials and components.</td>
</tr>
</tbody>
</table>
Table 4: Classification and fields of application (continued from page 8)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Features</th>
<th>Typical field of application</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEES</td>
<td>Basic fluid: Ester based on renewable raw materials, synthetic esters, mixtures of various esters, mixtures with polyalphaolefines (< 30%)</td>
<td>Suitable for most fields of application and components. Saturated HEES should be preferred over partially saturated HEES and HETG for components and systems exposed to high stress levels.</td>
<td>For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.</td>
</tr>
<tr>
<td></td>
<td>Density at 15 °C: typically 0.90–0.93 kg/dm³</td>
<td></td>
<td>– Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under –15 °C.</td>
</tr>
<tr>
<td></td>
<td>Vi: typical 140–160</td>
<td></td>
<td>– In operation, a higher temperature in comparison to mineral oil HLP/HVLP is to be expected given identical design and viscosity.</td>
</tr>
<tr>
<td></td>
<td>Iodine count < 15</td>
<td></td>
<td>– Good viscosity/temperature characteristics, shear stability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Good corrosion protection, if correspondingly additivated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Mostly classed as insignificantly water-endangering (water hazard class WGK 1), in the case of low viscosity classes (up to ISO VG 32) also classed as not water-endangering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– High dirt dissolving capacity on fluid changeovers</td>
</tr>
<tr>
<td>HEPR</td>
<td>Basic fluid: synthetically manufactured hydrocarbons (polyalphaolefins PAO) partly mixed with esters (< 30%)</td>
<td>Suitable for most fields of application and components. HEPR should be preferred over partially saturated HEES and HETG for components and systems exposed to high stress levels.</td>
<td>For information on approved components, please refer to the respective product data sheet. For components which have not been approved according to the product data sheet, please consult your Bosch Rexroth sales partner.</td>
</tr>
<tr>
<td></td>
<td>Density at 15 °C: typically 0.87 kg/dm³</td>
<td></td>
<td>– Behaves similarly to HVLP- hydraulic fluids, individual products comply with ISO 15380 HEPR and DIN 51524-3 HVLP.</td>
</tr>
<tr>
<td></td>
<td>Vi: typical 140–160</td>
<td></td>
<td>– Preferred use of FKM seals. Please enquire for shaft seal rings and implementation temperatures under –15 °C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Good viscosity-temperature behavior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Classified as insignificantly water-endangering (water hazard class WGK 1)</td>
</tr>
</tbody>
</table>
| | | | **Note:** Note shear stability (see chapter 4.11 “Fluid servicing, fluid analysis and filtration” and chapter 6 “Glossary”)
| HETG | Basic fluid: vegetable oils and triglycerides | Not recommended for Rexroth components! | Practical requirements are frequently not fulfilled by hydraulic fluids in this classification. Use only permissible after consultation. |
| | Density at 15 °C: typically 0.90–0.93 kg/dm³ | | – Viscosity is not stable over time |
| | Vi: typical > 200 | | – Very fast fluid aging, very hydrolysis-susceptible (please observe neutralization number) |
| | Iodine count > 90 | | – Tendency to gumming, gelling and setting. |
| | | | – Limit the lower (depending on viscosity class) and upper implementation temperatures (see chapter 3.1.5) |
| | | | – Only limited material compatibility |
| | | | – Filterability problems at water ingress |
| | | | – High dirt dissolving capacity on fluid changeovers |
| | | | – Mostly classed as not water-endangering |
4 Hydraulic fluids in operation

4.1 General

The properties of hydraulic fluids can change continually during storage and operation.

Please note that the fluid standard ISO 15380 merely describes minimum requirements for hydraulic fluids in new condition at the time of filling into the bins. The operator of a hydraulic system must ensure that the hydraulic fluid remains in a utilizable condition throughout its entire period of use.

Deviations from the characteristic values are to be clarified with the lubricant manufacturer, the test labs or Bosch Rexroth.

Bosch Rexroth will accept no liability for damage to its components resulting from inadequate hydraulic fluid changeovers!

Recommendation:
- Clean reservoir systems and machine reservoirs regularly
- Store barrels on their sides
- Store containers in a dry, roofed place
- Clean reservoir systems and machine reservoirs regularly

4.2 Storage and handling

Hydraulic fluids must be stored correctly in accordance with the instructions of the lubricant manufacturer. Avoid exposing the containers to lengthy periods of direct heat. Containers are to be stored in such a way that the risk of any foreign liquid or solid matter (e.g. water, foreign fluids or dust) ingression into the inside of the container can be ruled out. After taking hydraulic fluids from the containers, these are immediately to be properly resealed.

Recommendation:
- Store containers in a dry, roofed place
- Store barrels on their sides
- Clean reservoir systems and machine reservoirs regularly

4.3 Filling of new systems

Usually, the cleanliness levels of the hydraulic fluids as delivered do not meet the requirements of our components. Hydraulic fluids must be filtered using an appropriate filter system to minimize solid particle contamination and water in the system.

As early as possible during test operation, new systems should be filled with the selected hydraulic fluid so as to reduce the risk of accidentally mixing fluids (see chapter 4.5 “Mixing and compatibility of different hydraulic fluids”). Changing the hydraulic medium at a later point represents significant additional costs (see following chapter).

4.4 Hydraulic fluid changeover

In particular with the changeover from mineral oils to environmentally acceptable hydraulic fluids, but also from one environmentally acceptable hydraulic fluids to another, there may be interference (e.g. incompatibility in the form of gelling, sitting, stable foam or reduced filterability or filter blockage).

In the case of changeovers of the fluid in hydraulic systems, it is important to ensure compatibility of the new hydraulic fluid with the remains of the previous hydraulic fluid. Bosch Rexroth recommends obtaining verification of compatibility from the manufacturer or supplier of the new hydraulic fluid. The quantity of old fluid remaining should be minimized. Mixing hydraulic fluids should be avoided, see following chapter.

For information on changing over hydraulic fluids with different classifications, please refer to VDMA 24314, VDMA 24569 and ISO 15380 appendix A.

Bosch Rexroth will not accept liability for any damage to its components resulting from inadequate hydraulic fluid changeovers!

4.5 Mixing and compatibility of different hydraulic fluids

If hydraulic fluids from different manufacturers or different types from the same manufacturer are mixed, gelling, sitting and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions and damage to the hydraulic system.

If the fluid contains more than 2 % of another fluid then it is considered to be a mixture. Exceptions apply for water, see chapter 4.10 “Water”.

Mixing with other hydraulic fluids is not generally permitted. This also includes hydraulic fluids with the same classification. If individual lubricant manufacturers advertise miscibility and/or compatibility, this is entirely the responsibility of the lubricant manufacturer.

Bosch Rexroth customarily tests all components with mineral oil HLP before they are delivered.

Note: With connectible accessory units and mobile filtering systems, there is a considerable risk of non-permitted mixing of the hydraulic fluids!

Bosch Rexroth will not accept liability for any damage to its components resulting from mixing hydraulic fluids!

4.6 Re-additivation

Additives added at a later point in time such as colors, wear reducers, VI enhancers or anti-foam additives, may negatively affect the performance properties of the hydraulic fluid and the compatibility with our components and therefore are not permissible.

Bosch Rexroth will not accept liability for any damage to its components resulting from re-additivation!

4.7 Foaming behavior

Foam is created by rising air bubbles at the surface of hydraulic fluids in the reservoir. Foam that develops should collapse as quickly as possible.

Common hydraulic fluids in accordance with ISO 15380 are sufficiently inhibited against foam formation in new condition. On account of aging and adsorption onto surfaces, the defoamer concentration may decrease over time, leading to a stable foam.

Defoamers may be re-dosed only after consultation with the lubricant manufacturer and with his written approval.

Defoamers may affect the air separation ability.
4.8 Corrosion

The hydraulic fluid is to guarantee sufficient corrosion protection of components under all operating conditions, even in the event of impermissible water contamination.

Environmentally acceptable hydraulic fluids are tested for corrosion protection in the same way as mineral oil HLP/HVLP. When used in practice other corrosion mechanisms are revealed in detail and in individual cases, for the most part in contact with non-ferrous and white alloys.

4.9 Air

Under atmospheric conditions the hydraulic fluid contains dissolved air. In the negative pressure range, for instance in the suction pipe of the pump or downstream of control edges, this dissolved air may transform into undissolved air. The undissolved air content represents a risk of cavitation and of the diesel effect. This results in material erosion of components and increased hydraulic fluid aging.

With the correct measures, such as suction pipe and reservoir design, and an appropriate hydraulic fluid, air intake and separation can be positively influenced.

See also chapter 3.1.7 "Air separation ability (ASA)".

4.10 Water

Water contamination in hydraulic fluids can result from direct ingress or indirectly through condensation of water from the air due to temperature variations.

HEPG dissolves water completely. This means that any water that has ingressed into the system cannot be drained off in the sump of the reservoir.

In the case of hydraulic fluids classed HETG, HEES and HEPR undissolved water can be drained off from the reservoir sump, the remaining water content is however too high to ensure that the maximum permissible water limit values are observed in the long term.

Water in the hydraulic fluid can result in wear or direct failure of hydraulic components. Furthermore, a high water content in the hydraulic fluid negatively affects aging and filterability and increases susceptibility to cavitation. During operation, the water content in all hydraulic fluids, determined according to the "Karl Fischer method" (see chapter 6 "Glossary") for all environmentally acceptable hydraulic fluids must constantly be kept below 0.1% (1000 ppm). To ensure a long service life of both hydraulic fluids and components, Bosch Rexroth recommends that values below 0.05% (500 ppm) are permanently maintained.

Due to the higher water solubility (except for HEPR) in comparison to mineral oil HLP/HVLP it is urgently advised that precautions be taken when using environmentally acceptable hydraulic fluids, such as a dehumidifier on the reservoir ventilation.

Water content has an affect particularly in the case of HETG and partially saturated HEES in that it accelerates aging (hydrolysis) of the hydraulic fluid and biological degradation, see chapter 4.11 "Fluid servicing, fluid analysis and filtration".

4.11 Fluid servicing, fluid analysis and filtration

Air, water, operating temperature influences and solid matter contamination will change the performance characteristics of hydraulic fluids and cause them to age.

To preserve the usage properties and ensure a long service life for hydraulic fluid and components, the monitoring of the fluid condition and a filtration adapted to the application requirements (draining and degassing if required) are indispensable.

The effort is higher in the case of unfavorable usage conditions, increased stress for the hydraulic system or high expectations as to availability and service life, see chapter 2 "Solid particle contamination and cleanliness levels".

When commissioning a system, please note that the required minimum cleanliness level can frequently be attained only by flushing the system. Due to severe start-up contamination, it may be possible that a fluid and/or filter replacement becomes necessary after a short operating period (< 50 operating hours).

The hydraulic fluid must be replaced at regular intervals and tested by the lubricant manufacturer or recognized accredited test labs. We recommend a reference analysis after commissioning.

The minimum data to be tested for analyses are:

- Viscosity at 40 °C and 100 °C
- Neutralization number NN (acid number AN)
- Water content (Karl-Fischer method)
- Particle measurement with evaluation according to ISO 4406 or mass of solid foreign substances with evaluation to EN 12662
- Element analysis (RFA (EDX) / ICP, specify test method)
- Comparison with new product or available trend analyses
- Assessment / evaluation for further use
- Also recommended: IR spectrum"

Differences in the maintenance and upkeep of environmentally acceptable hydraulic fluids with the corresponding suitability characteristics in comparison to mineral oil HLP/HVLP are not necessary. Attention is however drawn to the note in chapter 1.3.

After changing over hydraulic fluids it is recommended that the filters be replaced again after 50 operating hours as fluid aging products may have detached themselves ("self-cleaning effect").

Compared to the pure unused hydraulic fluid the changed neutralization number NN (acid number AN) indicates how many aging products are contained in the hydraulic fluid. This difference must be kept as low as possible. As soon as the trend analysis notes a significant increase in the values, the lubricant manufacturer should be contacted.

A higher viscosity than that of new materials indicates that the hydraulic fluid has aged. Evaluation by the test lab or lubricant manufacturers is however authoritative, whose recommendations should be urgently observed.
5 Disposal and environmental protection

All environmentally acceptable hydraulic fluids, are like mineral oil-based hydraulic fluids, subject to special disposal obligations.

The respective lubricant manufacturers provide specifications on environmentally acceptable handling and storage. Please ensure that spilt or splashed fluids are absorbed with appropriate adsorbents or by a technique that prevents it contaminating water courses, the ground or sewerage systems.

It is also not permitted to mix fluids when disposing of hydraulic fluids. Regulations governing the handing of used oils stipulate that used oils are not to mixed with other products, e.g. substances containing halogen. Non-compliance will increase disposal costs. Comply with the national legal provisions concerning the disposal of the corresponding hydraulic fluid. Comply with the local safety data sheet of the lubricant manufacturer for the country concerned.
6 Glossary

Additivation
Additives are chemical substances added to the basic fluids to achieve or improve specific properties.

Aging
Hydraulic fluids age due to oxidation (see chapter 3.1.5 "Aging resistance"). Liquid and solid contamination acts as a catalyst for aging, meaning that it needs to be minimized as far as possible by careful filtration. Please refer to Hydrolysis.

Arrhenius equation
The quantitative relation between reaction rate and temperature is described by an exponential function, the Arrhenius equation. This function is usually visualized within the typical temperature range of the hydraulic system. For a practical example, see chapter 3.1.5 "Aging resistance".

Basic fluids
In general, a hydraulic fluid is made up of a basic fluid, or base oil, and chemical substances, the so-called additives. The proportion of basic fluid is generally greater than 90%.

Diesel effect
If hydraulic fluid that contains air bubbles is compressed quickly, the bubbles are heated to such a degree that a self-ignition of the air-gas mix may occur. The resultant temperature increase may lead to seal damage and increased aging of the hydraulic fluid.

Saturated esters
Esters differ by the number of C atoms (chain length) and position of the bonds between the C atoms. Saturated esters do not have double/multiple bonds between C atoms and are therefore more resistant to aging than partially saturated esters.

Partially saturated esters
In contrast to saturated esters, partially saturated esters have double/multiple bonds between C atoms. Rexroth defines partially saturated esters as unsaturated bonds and mixtures of esters with unsaturated and saturated bonds. Esters with unsaturated bonds are produced on the basis of renewable raw materials.

Depending on their number and position, these unsaturated bonds between the C atoms are instable. These bonds can detach themselves and form new bonds, thus changing the properties of those liquids (an aging mechanism).

Hydrolysis
Hydrolysis is the splitting of a chemical bond through the reaction with water under the influence of temperature.

ICP (atomic emission spectroscopy)
The ICP procedure can be used to determine various wear metals, contamination types and additives. Practically all elements in the periodic system can be detected with this method.

Iodine count
The iodine count is a yardstick for the quantity of single and multiple unsaturated bonds between C atoms in the basic fluid. A low iodine count indicates that the hydraulic fluid contains few unsaturated bonds and is thus considerably more resistant to aging than a hydraulic fluid with a high iodine count. A statement about the position at which these multiple bonds are located and about how "stable" they are against influencing factors cannot be derived simply by stating the iodine count.

Karl Fischer method
Method to determine the water content in fluids. Indirect coulometric determination procedure in accordance with DIN EN ISO 12937 in connection with DIN 51777-2. Only the combination of both standards will assure adequately accurate measured values. For hydraulic fluids based on glycol, DIN EN ISO 12937 is to be applied in conjunction with DIN 51777-1.

Cavitation
Cavitation is the creation of cavities in fluids due to pressure reduction below the saturated vapour pressure and subsequent implosion when the pressure increases. When the cavities implode, extremely high acceleration, temperatures and pressure may occur temporarily, which may damage the component surfaces.

Neutralization number (NN)
The neutralization number (NN) or acid number (AN) specifies the amount of caustic potash required to neutralize the acid contained in one gram of fluid.

Pour point
The lowest temperature at which the fluid still just flows when cooled down under set conditions. The pour point is specified in the lubricant manufacturers’ technical data sheets as a reference value for achieving this flow limit.

RFA (wavelength dispersive x-ray fluorescence analysis)
Is a procedure to determine nearly all elements in liquid and solid samples with nearly any composition. This analysis method is suitable for examining additives and contamination, delivering fast results.

Shearing/shear loss
Shearing of molecule chains during operation can change the viscosity of hydraulic fluids with long chain VI enhancers. The initially high viscosity index drops. This needs to be taken into account when selecting the hydraulic fluid.

The only value at present that can be used to assess viscosity changes in operation is the result of the test in accordance with DIN 51350 part -6. Please note that there are practical applications that create a much higher shear load on such hydraulic fluids than can be achieved by this test.

Stick-slip
Interaction between a resilient mass system involving friction (such as cylinder + oil column + load) and the pressure increase at very low sliding speeds. The static friction of the system is a decisive value here. The lower it is, the lower the speed that can still be maintained without sticking. Depending on the tribologic system, the stick-slip effect may lead to vibrations generated and sometimes also to significant noise emission. In many cases, the effect can be attenuated by replacing the lubricant.
Viscosity

Viscosity is the measure of the internal friction of a fluid to flow. It is defined as the property of a substance to flow under tension. Viscosity is the most important characteristic for describing the load-bearing capacity of a hydraulic fluid.

Kinematic viscosity is the ratio of the dynamic viscosity and the density of the fluid; the unit is mm²/s. Hydraulic fluids are classified by their kinematic viscosity into ISO viscosity classes. The reference temperature for this is 40 °C.

Viscosity index (VI)

Refers to the viscosity temperature behavior of a fluid. The lower the change of viscosity in relation the temperature, the higher the VI.
Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52 / 18-0
Fax +49 (0) 93 52 / 18-23 58
documentation@boschrexroth.de
www.boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

No statements concerning the suitability of a hydraulic fluid for a specific purpose can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.